

DOCUMENTATION SHEET

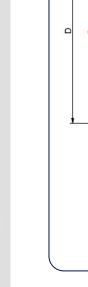
Propulsion Equipment

Type Twin marine coupling

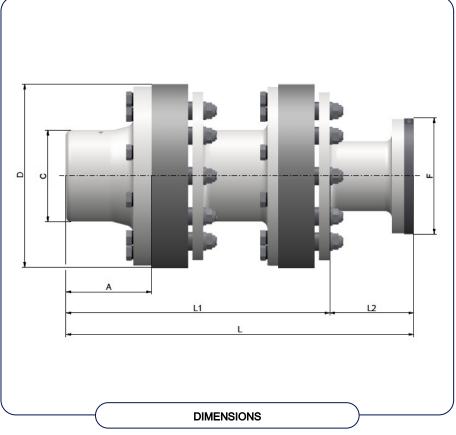
COUPLING COUPLING

General

Pre-compressed rubber blocks form the basis of all flexible coupling designs. The blocks accommodate movement in all directions, making couplings exceptionally tolerant of relative propeller shaft displacements in combination with flexible mounted propulsion engine and providing controlled damping of torsional vibration excitation.

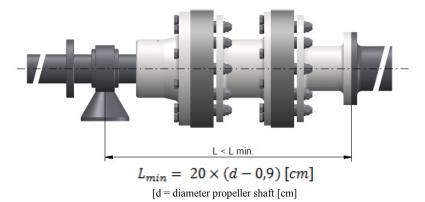

Advantages of a flexible marine coupling

- Reduction of torque fluctuations
- Damping of torsional vibrations
- Reduction of resonance symptoms
- Compensating of radial, axial and angular shaft displacements
- Isolation of vibration and noise transmission


Specification

The flexible couplings are standard manufactured in steel and seawater resisting aluminum. Other materials e.g. non-magnetic stainless steel can be supplied if required. The coupling will maintain drive in the event of damage occurring to the rubber elements. All flexible marine couplings can be supplied with an adaptor flange or adaptor shaft, to fit any available reduction gearboxes brand worldwide.

In addition to the standard range, heavy duty and special couplings can be made to meet particular requirements .


Twin marine coupling

Selection

When using a "Twin" coupling, the free shaft end—the distance between the output flange of reverse gear and the centre of the first propeller shaft bearing - is less than the minimum required length L_{MIN} . The first propeller shaft bearing should be positioned directly behind the coupling.

The characteristics table is ideal for initial selection; however, it is advisable to seek expert advise before finalizing an installation design. Rubber Design is eager to support you by making calculations as a service, to ensure a proper functioning system.

	Dimensions [mm]							Nominal torque	Max Torque	Max Thrust capacity	Max Speed
	Α	С	D	L1	L2	F	L	[kNm]	[kNm]	[kN]	[rpm]
ERD 202	100	90	220	391	To be determined	To be determined	11+12	0,75	2,25	n.a.	4500
ERD 203	115	105	245	416				1,25	3,75	n.a.	4050
ERD 204	150	130	295	461				2,20	6,60	n.a.	3375
ERD 205	160	145	345	481				3,35	10,05	n.a.	2900
ERD 206	175	160	345	506				4,05	12,15	n.a.	2900
ERD 207	180	170	370	630				5,60	16,90	n.a.	2700
ERD 208	180	180	395	681				7,30	21,90	n.a.	2475
ERD 209	235	200	445	741				11,2	33,60	n.a.	2250
ERD 210	240	220	445	860				16,2	48,60	n.a.	2250
ERD 211	245	240	490	870				24,5	73,50	n.a.	2025
ERD 212	290	275	600	875				40,5	121,50	n.a.	1650
ERD 213	295	335	685	1014				60,47	181,40	n.a.	1400
ERD 214	350	375	825	1075				88,20	264,60	n.a.	1200
ERD 215	Und	er cor	nstruc	tion				119,50	358,60	n.a.	1000
CHARACTERISTICS											

Engineering

CAD drawings (2D/3D) of the flexible marine couplings are available in different formats so that this geometry can be easily imported into the CAD drawing of the complete propeller shaft installation. All flexible marine couplings can be delivered with the required classification approval.

Remarks

It is our intention to maintain the excellent standard of our products. Modifications and improvements may be made from time to time and it is therefore advisable to contact us before ordering.

2

COUPLING COUPLING

Rubber Design B.V.

Industrieweg 21 2995BE Heerjansdam

The Netherlands

Phone: +31 (0) 78 677 87 78 Fax: +31 (0) 78 677 10 38 Email: info@rubberdesign.nl Web: www.rubberdesign.nl